Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev E ; 99(4-1): 043202, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108619

RESUMO

New data for the reflectivity of shock-compressed xenon plasmas at pressures of 10-12 GPa at large incident angles are presented. In addition, measurements have been performed at different densities. These data allow to analyze the free-electron density profile across the shock wave front. Assuming a Fermi-like density profile, the width of the front layer is inferred. The reflectivity coefficients for the s- and p-polarized waves are calculated. The influence of atoms, which was taken into account on the level of the collision frequency, proves to be essential for the understanding of the reflection process. Subsequently, a unique density profile is sufficient to obtain good agreement with the experimental data at different incident angles and at all investigated optical laser frequencies. Reflectivity measurements for different densities allow to determine the dependence of shock-front density profiles on the plasma parameters. As a result, it was found that the width of the front layer increases with decreasing density.

2.
Phys Rev E ; 95(6-1): 063208, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709212

RESUMO

We present an approach which allows the consistent treatment of bound states in the context of dc conductivity in dense partially ionized noble gas plasmas. Besides electron-ion and electron-electron collisions, further collision mechanisms owing to neutral constituents are taken into account. Especially at low temperatures of 10^{4}to10^{5} K, electron-atom collisions give a substantial contribution to the relevant correlation functions. We suggest an optical potential for the description of the electron-atom scattering which is applicable for all noble gases. The electron-atom momentum-transfer cross section is in agreement with experimental scattering data. In addition, the influence of the medium is analyzed, the optical potential is advanced including screening effects. The position of the Ramsauer minimum is influenced by the plasma. Alternative approaches for the electron-atom potential are discussed. Good agreement of calculated conductivity with experimental data for noble gas plasmas is obtained.

3.
Phys Rev E ; 94(1-1): 013203, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27575226

RESUMO

Fundamental properties of warm dense matter are described by the dielectric function, which gives access to the frequency-dependent electrical conductivity; absorption, emission, and scattering of radiation; charged particles stopping; and further macroscopic properties. Different approaches to the dielectric function and the related dynamical collision frequency are compared in a wide frequency range. The high-frequency limit describing inverse bremsstrahlung and the low-frequency limit of the dc conductivity are considered. Sum rules and Kramers-Kronig relation are checked for the generalized linear response theory and the standard approach following kinetic theory. The results are discussed in application to aluminum, xenon, and argon plasmas.

4.
Phys Rev Lett ; 115(11): 115001, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406836

RESUMO

We present the first highly resolved measurements of the plasmon spectrum in an ultrafast heated solid. Multi-keV x-ray photons from the Linac Coherent Light Source have been focused to one micrometer diameter focal spots producing solid density aluminum plasmas with a known electron density of n_{e}=1.8×10^{23} cm^{-3}. Detailed balance is observed through the intensity ratio of up- and down-shifted plasmons in x-ray forward scattering spectra measuring the electron temperature. The plasmon damping is treated by electron-ion collision models beyond the Born approximation to determine the electrical conductivity of warm dense aluminum.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25974598

RESUMO

The equation of state of partially ionized hydrogen plasma is considered with special focus on the contribution of the e-H(2) interaction. Traditional semiempirical concepts such as the excluded volume are improved using microscopic approaches to treat the e-H(2) problem. Within a cluster virial expansion, the Beth-Uhlenbeck formula is applied to infer the contribution of bound and scattering states to the temperature-dependent second virial coefficient. The scattering states are calculated using the phase expansion method for the polarization interaction that incorporates experimental data for the e-H(2) scattering cross section. We present results for the scattering phase shifts, differential scattering cross sections, and the second virial coefficient due to the e-H(2) interaction. The influence of this interaction on the composition of the partially ionized hydrogen plasma is confined to the parameter range where both the H(2) and the free-electron components are abundant.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25974600

RESUMO

We present an approach that can resolve the controversy with respect to the role of electron-electron collisions in calculating the dynamic conductivity of dense plasmas. In particular, the dc conductivity is analyzed in the low-density, nondegenerate limit where the Spitzer theory is valid and electron-electron collisions lead to the well-known reduction in comparison to the result considering only electron-ion collisions (Lorentz model). With increasing degeneracy, the contribution of electron-electron collisions to the dc conductivity is decreasing and can be neglected for the liquid metal domain where the Ziman theory is applicable. We give expressions for the effect of electron-electron collisions in calculating the conductivity in the warm dense matter region, i.e., for strongly coupled Coulomb systems at arbitrary degeneracy.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 2): 036401, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22587190

RESUMO

Calculating the frequency-dependent dielectric function for strongly coupled plasmas, the relations within kinetic theory and linear response theory are derived and discussed in comparison. In this context, we give a proof that the Kohler variational principle can be extended to arbitrary frequencies. It is shown to be a special case of the Zubarev method for the construction of a nonequilibrium statistical operator from the principle of the extremum of entropy production. Within kinetic theory, the commonly used energy-dependent relaxation time approach is strictly valid only for the Lorentz plasma in the static case. It is compared with the result from linear response theory that includes electron-electron interactions and applies for arbitrary frequencies, including bremsstrahlung emission. It is shown how a general approach to linear response encompasses the different approximations and opens options for systematic improvements.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(2 Pt 2): 026406, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20365664

RESUMO

We study warm dense matter formed by subpicosecond laser irradiation at several 10(19) W/cm(2) of thin Ti foils using x-ray spectroscopy with high spectral (E/DeltaE approximately 15,000) and one-dimensional spatial (Deltax=13.5 microm) resolutions. Ti Kalpha doublets modeled by line-shape calculations are compared with Abel-inverted single-pulse experimental spectra and provide radial distributions of the bulk-electron temperature and the absolute-photon number Kalpha yield in the target interiors. A core with approximately 40 eV extends homogeneously up to ten times the laser-focus size. The spatial distributions of the bulk-electron temperature and Kalpha yield are strongly correlated.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 2): 036409, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20365884

RESUMO

Linear response theory, as developed within the Zubarev formalism, is a quantum statistical approach for describing systems out of but close to equilibrium, which has been successfully applied to a wide variety of plasmas in an external electric field and/or containing a temperature gradient. We present here an extension of linear response theory to include the effects of an external magnetic field. General expressions for the complete set of relevant transport properties are given. In particular, the Hall effect and the influence of a magnetic field on the dc electrical conductivity are discussed. Low-density limits including electron-electron scattering are presented as well as results for arbitrary degeneracy.

10.
Phys Rev Lett ; 104(12): 125002, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366540

RESUMO

We investigate ultrafast (fs) electron dynamics in a liquid hydrogen sample, isochorically and volumetrically heated to a moderately coupled plasma state. Thomson scattering measurements using 91.8 eV photons from the free-electron laser in Hamburg (FLASH at DESY) show that the hydrogen plasma has been driven to a nonthermal state with an electron temperature of 13 eV and an ion temperature below 0.1 eV, while the free-electron density is 2.8x10{20} cm{-3}. For dense plasmas, our experimental data strongly support a nonequilibrium kinetics model that uses impact ionization cross sections based on classical free-electron collisions.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(2 Pt 2): 026411, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18850950

RESUMO

Collective Thomson scattering with extreme ultraviolet light or x rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to noncollective scattering, the consideration of collisions is important.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(6 Pt 2): 066406, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19256961

RESUMO

We report the creation of solid-density aluminum plasma using free-electron laser (FEL) radiation at 13.5nm wavelength. Ultrashort pulses were focused on a bulk Al target, yielding an intensity of 2x10;{14}Wcm;{2} . The radiation emitted from the plasma was measured using an xuv spectrometer. Bremsstrahlung and line intensity ratios yield consistent electron temperatures of about 38eV , supported by radiation hydrodynamics simulations. This shows that xuv FELs heat up plasmas volumetrically and homogeneously at warm-dense-matter conditions, which are accurately characterized by xuv spectroscopy.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(3 Pt 2): 036405, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17930349

RESUMO

Theoretical results for the electrical conductivity of noble gas plasmas are presented in comparison with experiment. The composition is determined within a partially ionized plasma model. The conductivity is then calculated using linear response theory, in which the relevant scattering mechanisms of electrons from ions, electrons, and neutral species are taken into account. In particular, the Ramsauer-Townsend effect in electron-neutral scattering is discussed and the importance of a correct description of the Coulomb logarithm in electron scattering by charged particles is shown. A detailed comparison with recent experiments on argon and xenon plasmas is given and results for helium and neon are also revisited. Excellent agreement between theory and experiment is observed, showing considerable improvement upon previous calculations.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(6 Pt 2): 066408, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16089881

RESUMO

The optical conductivity sigma (omega) for dense Coulomb systems is investigated using molecular dynamics simulations on the basis of pseudopotentials to mimic quantum effects. Starting from linear response theory, the response in the long-wavelength limit k=0 can be expressed by different types of autocorrelation functions (ACF's) such as the current ACF, the force ACF, or the charge density ACF. Consistent simulation data for transverse as well as longitudinal ACF's are shown which are based on calculations with high numerical accuracy. Results are compared with perturbation expansions which are restricted to small values of the plasma parameter. The relevance with respect to a quantum Coulomb plasma is discussed. Finally, results are presented showing a consistent description of these model plasmas in comparison to quantum statistical approaches and to experimental data.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(6 Pt 2): 066412, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15244750

RESUMO

In the long-wavelength limit k=0, the response function has been investigated with respect to the external and internal fields which is expressed by the external and internal conductivity, respectively. Molecular dynamics simulations are performed to obtain the current-current correlation function and the dynamical collision frequency which are compared with analytical expressions. Special attention is given to the dynamical collision frequency and the description of plasma oscillations in the case of k=0. The relation between the external and internal conductivity and the current-current correlation function is analyzed.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(3 Pt 2): 036403, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14524899

RESUMO

Results for the reflection coefficient of shock-compressed dense xenon plasmas at pressures of 1.6-20 GPa and temperatures around 30 000 K using laser beams of wavelengths 1.06 micro m and 0.694 micro m are presented, which indicate metallic behavior at high densities. For the theoretical description of the experiments, a quantum statistical approach to the dielectric function is used. The comparison with molecular dynamics simulations is discussed. We conclude that reflectivity measurements at different wavelengths can provide information about the density profile of the shock wave front.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(5 Pt 2): 056410, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11736104

RESUMO

Analytical results for the structure factor of a two-component model plasma that describe an electron-ion plasma with modified interaction are derived from a Green function approach in different approximations. The random-phase approximation is improved by including the dynamic collision frequency, and results for the long-wavelength limit are extended to arbitrary wave numbers using the Mermin ansatz. After taking the classical limit of the resulting expressions, they are compared with molecular dynamics simulation results for the classical two-component model plasma.

18.
Artigo em Inglês | MEDLINE | ID: mdl-11089123

RESUMO

A systematic approach to the optical conductivity is given within a dielectric function formalism. The response function as well as the dynamical local-field factor G(k-->,omega) of an electron-ion plasma can be expressed in terms of determinants of equilibrium correlation functions which allow for a perturbative treatment. The dynamical collision frequency nu(omega)=-iomega(2)(pl)G(0,omega)/omega for fully ionized weakly coupled plasmas is evaluated in the low-density limit. A renormalization function is given to describe the effects of higher moments of the distribution function, thus the Spitzer formula is reproduced in the static limit. The existence of the third moment sum rule can be shown analytically. Numerical calculations are presented for the dynamical conductivity of hydrogen plasmas at solar core conditions.

19.
Artigo em Inglês | MEDLINE | ID: mdl-11970182

RESUMO

The response function of an interacting fermion gas is considered in the entire (k-->,omega) space. Applying a generalized linear response theory, it is expressed in terms of determinants of equilibrium correlation functions, which allow for a systematic perturbative treatment. The relation to dynamical local-field factors is given. As a special case, the dielectric function is evaluated for two-component (hydrogen) plasmas at arbitrary degeneracies. Collisions are treated in Born approximation leading to a (k-->,omega)-dependent collision integral. The link to the dynamical conductivity is given in the long-wavelength limit. Sum rules are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...